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Abstract. We consider the multiplicity problem of the branching rule GL(2k, CTHSp{2%,
). Finite-dimensional irreducible representations of GL(2k, C) are realized as right transla-
tions on subspaces of the holomorphic Hilbert (Bargmann} spaces of ¢ x 2k complex vari-
ables. Maps are exhibited which carry an irreducible representation of Sp(2k, C) into these
subspaces. An algebra of commuting operators is constructed and it is shown how eigen-
values of certain of these operators can be used to resolve the multiplicity.

1. Introduction

One of the outstanding problems in the representation theory of Lie groups is the
branching rule problem. Let G be a given Lie group and & a subgroup of G. Then it
is well known that a finite-dimensional irreducible representation of G can be decom-
posed as a direct sum of irreducible representations of H. The same irreducible represen-
tation of H may appear more than once in the decomposition. The branching rule GLH
consists of finding the multiplicity of an irreducible representation of H that occurs in
the decomposition. Whippman [14] stated several branching rules associated with simple
Lie groups. Since then, different techniques and formulations have been developed for
studying branching rules of classical Lie groups [3, 5, 11, 16] and of certain exceptional
groups [8, 15]. In this paper, we want to study the branching rule GL(2k, C)|Sp(2k,
C). In [5, 11], the rules are formulated via the Young tableaux. King [3] formulated
the rule in terms of the addition and division of certain symmetric functions known as
S-functions. These branching rules only give the multiplicity of an irreducible represen-
tation of H and do not distinguish the equivalent irreducible representations. Here, our
emphasis is different. We want to find a canonical way of labelling the equivalent
representations that occur in the branching rule GL(2k, C)][Sp(2k, €), in other words,
we want to break the multiplicity that appears in the branching rule explicitly. We shall
construct maps that carry an irreducible representation of Sp(2k, C) into an irreducible
representation of GL(2k, C). Then a class of generalized commuting Casimir operators
are exhibited. The eigenvalues and eigenvectors of these operators can then be used to
break the multiplicity that occurs in the branching rule. The main tools needed to carry
out this analysis are a Fock space in ¢ % 2k complex variables and the theory of dual
pairs [2, 9], which is used to construct the Casimir operators.

The general set-up for our problem will be discussed in section 2, Section 3 makes
use of the notion of dual pairs to exhibit an algebra of commuting differential operators.
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Theorem 3.3 gives explicit form of this algebra of operators; the eigenvalues and eigen-
vectors of certain elements of this algebra can then be used as labels to distinguish the
equivalent representations that occur in the branching rule. This is shown explicitly in
seclion 4 with an example of the branching rule GL(8, C)|Sp(8, C).

2. The general set-up

From now on, we let G denote the general linear group GL(2k, C) and A denote the
complex symplectic group Sp(2k, C). It is clear that H is embedded in G in a natural
way. The irreducible representation of G are parametrized by a 2k-tuple of non-negative
integers (1) =(m,, . .., my) which satisfies the dominant condition m, 2 ... 2my. A
concrete realization of a finite-dimensional irreducible representation of G can be
obtained in the following fashion. Suppose (m)=(m, ..., my) such thatm, . = ... =
iz =0 for some 1< g<2k. If B, denotes the subgroup of lower triangular matrices of
G, then we define a holomorphic character

2 B~ C*
AUBY =BT . L BIS VbeB,.

Let C?** denote the complex vector space of all g x 2k matrices. Let V&7 denote
the complex vector space of all polynomial functions f: C?** »C which satisfy the
covariant condition f(5Z)=1'""() f(Z), for all (b, Z) belonging to B, x C***. Let
RE) denote the holomorphically induced representation of G on V{7 defined by
(REM@) )(Z2)=f(Zg), geG. Then according to [12], REY is irreducible and its highest
weight is indexed by () which is called the signature of the representation R{p.
However, if we restrict this representation to H, then RY? becomes a reducible represen-
tation of H.

Now, if Z=[z,5]eC?*%*, then set Z to be the complex conjugate of Z. Let d.X

and d¥,, denote the Lebesgue measure on | and define

g 2k
dZ= l—[ n d.Xm‘dYai
g=]i=]
to be the Lebesgue product measure on R, Define a2 Gaussian measure
du(Z)=n""* exp|—-tr(ZZ")]

ZeCY**, where tr denote the trace of a matrix. A map f: C?** ¢ is called holo-
morphic square integrable if it is holomorphic on the entire domain C*** and if

j £ (Z)* dp(Z) <oo.
oo

It is obvious that the holomorphic square integrable functions form a complex vector
space, in fact, they form a Hilbert space with respect to the inner product

(fi, )= FZ)FA(Z) du(2).
o

Let # =4 (C7"%) denote this Hilbert space, which is known as the Fock space of
g% 2k complex variables. If P{(C7**) is the vector space of all polynomial functions
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on C7**, then P(C7*¥) is a dense subspace in &. Moreover, if we endow P(C7**)
with the differential inner product

{p1, po =P1(D)P2(Z)|:=o (2.1)

where p(D} denotes the differential operator by replacing z; by 3/8z; {(1gi<q,
1< 2k), then we can easily verify that the inner product (-, -) and {-, -> are identical
on P(CT™%y,

If D, denote the group of ali complex diagonal invertible matrices of order ¢, and
if (MY=(M,,..., M,)is a g-tuple of non-negative integers, we define a holomorphic
character

¢ p,»C*
EMDy=dil ... djy YdeD,.

A polynomial function p: C**%*—C is said to transform covariantly with respect to
EMSEF(AZ)=LMd) f(Z), for all (d, Z) belonging to D, x C7**, It is obvious that
the polynomial functions which transform covariantly with respect to £ form a
subspace of #. We shall denote this subspace by P*". Now, if (m)= (11, ..., m,) is
a g-tuple of integers such that m>...2m, 20, then it is clear that V" is a
subspace of P™",

Now, an irreducible holomorphically induced representation of H is parametrized
by a k-tuple of non-negative integers (w2)=(m,,...,m} such that mm2.. . 2m.. A
concrete realization of such an irreducible representation of H can be obtalned as
follows. Let B: denote the lower triangular subgroup of GL(%, C). We define a holo-
morphic character

g(m) . Bk—ﬂC*
EPBY=b ... B, Vbe By

Consider the following space:

yim= { f: C*** €| f polynomial function, £ (bX ) = £Y"b) £ (X),

2 "
for be B,, XeC*** and Z ( or ____&f )=0,1-.<J<jsk}.
p=1 62,;, az}p.pk az;‘p.{.k 52‘,‘,,
Let RSP denote the representation of H on F{" by right translation, that is,
(RED(M) Y Z)=f(Zk), he H. Then according to |1 3] RE is irreducible with signature
(m)

Finally, we conclude this section with the following definition.

Definition 2.2. Let V" be an H-module. The isotypic component (F§") of V5" in

(1)

F s the sum of all H-modules in & which are eguivalent to Vs,".

3. The multiplicity breaking of G|H

We shall now give a procedure for breaking the multiplicity that appears in the branch-
ing rule GLH. For this, suppose (m)=(m,...,my} is a g-tuple of integers such that
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myz ... 2,20, Let L denote the representation of GL(g, C) on P™" defined by
(L") Z)=p(g"'Z), geGL(g, €) and R"" denote the representation of G on P""
by right translation. 1f we let L, (respectively, R,,) denote the infinitesimal operators
of L™ (respectively, ™) corresponding to the standard basis e, (respectively, e,,) of
the Lie algebra C7*7 (respectively, C**%) of GL(g, C) (respectively, G); then

#* 3 ¢ 8
Ly= oy — R,.= Lo — 1<i,j< 1<r, 52k,
0= 2 L g ,E. " L INg S

Now, it is easy to see that the space ¥§}" consists of polynomial functions in P which
are simultaneously annihilated by all lowering operators of the form
Ly with I <i<j<gq. (3.1)
and Jet us denote by (REx, V&) the restriction of the representation of REY to H.
Now, let SU(q, g) be the linear isometry group for the Hermitian form
| ZPHIZ . HZ 1 2l L =1 2 over C.

Then the group SO*(2g) is the set of all elements g in SU(g, ¢) such that g'J g=J,
where g" is the transpose of g and

= (0 L,)
I, 0
where I is the ¢ x ¢ identity matrix. Then according to 2, 7], (SO*(2¢), Sp(2k, C))
forms a dual pair of reductive groups. Let

e A k
Luz Z ng P‘J!= Z (Z.-,,+kZm—ZmZm+k)
=1 i n=1
and
ez iz
Dy= - 1<i, j<g. (3.2)
rrz-:l 0Zin+i: 0Zjn  8Zin 0Zjmrn ShISA

These operators form a basis for the Lie algebra so*(2q) of the group SO*(2q) and
they generate a universal enveloping algebra % of differential operators which acts on
P(C?**). Moreover, by the Poincaré-Birkoff-Witt theorem, the ordered monomials in
Ly, Py, Dy form a basis for the algebra %.

Now suppose the H-module (RE), V&) occurs in PP y times (as will be shown
in section 4, we can compute this p easily with the help of a special formula). Then
from a consequence of Burnside’s theorem and the theory of dual pairs [2, 9], there
exist ¢ linearly independent elements in % which form a basis for the vector space
Homy(FE, Py of all intertwining operators from V& to P, In fact, if AL} is
the highest weight vector of V", then one can choose u elements py,...,p, of ¥
such that pAbe), 1<i<p, are linearly independent highest-weight vectors of the p
copies of the H-module equivalent to V§;* which are contained in P™. Let W™
denote the vector space spanned by p,in), and let Kerl*™ denote its projection in
V&P, that is, Kerlaa®™ is the common kernel subspace in W™ of all operators Ly
in (3.1). Hence, Ker&)*" is isomorphic to the subspace J( V&™) ~ (RED i, VEP), the
intersection of the isotypic component of V3§ with (RE! |y, V&i"). In order to break
the multiplicity in I(V§") A (RSP 5, V&), we shall find operators in % which commute
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with the operators L, in (3.1} (but without the condition i <j) and which decompose
KerZX™ into distinct one-dimensional eigenspaces. Then the eigenvalues and eigenvec-
tors associated with the operators can be used as labels to distinguish the equivalent
representations. In fact, we shall use commuting Hermitian operators in % so that the
eigenvectors are all orthogonal to each other with respect to the inner product (2.1).

Let us now concentrate on finding operators in % which commute with L;. Let Z
be an element of C7**, The action of GL(g, C) on Z is simply of the form

g-[gZ) geGL(g,C).
Its dual action is therefore
2—[Zg] geq.

Now, let R denote the matrix (R,). We write L;, 1</, j<g, into a g X ¢ matrix [L],
that is,

Ly qu
{L]= :
Ly vt Ly

Stmilarly, we write P, (respectively, D), 1 1, f<q. into a ¢ X g matrix [ P] (respectively,
[D]). Also, let [E] denote the matrix [— L]", where T denotes the transpose. We now
have the main theorem of this paper.

Theorem 3.3. In the universal enveloping algebra %, consider the trace of arbitrary
products of the following matrices:

(1D [L)
) [P11D] (3.4)
(3 [P]E] (D).

Then these operators generate a subalgebra ¥~ of differential operators in % that

commute with the operators Ly, i</, j<gq.

Exaimple. We can form the following commuting operator:

tr([PIDILIPILE]D)).

Proof. Let T" denote the complexification of so*(2g), that is I"=s0(2g, C), the Lie
algebra of the complex 2¢g x 2¢ special orthogonal group. If £, then £ is of the
following form:

Ay

where [ ¥]is a g X g complex matrix, [Q]=—~[ Y] and [ W], [X] are ¢ x g skew-symmetric
matrices. On the other hand, the differential operators Py, Dy and Ly as defined in (3.2)
also form a basis for I, Let S(so(2¢, C)) denote the symmetric algebra of so(2g, C),
and % (50(2g, C)) denote the universal enveloping algebra of so(2¢, C). We can now
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define the co-adjoint representation Tof H'=S0(2g, C)in 5(s0(2g, C)) by the equation
[TUNPI(E) =pUr=" ER') heH', peS(so(2g, C)) and £eT.

A polynomial pe S(so(2gq, €)} is said to be K-invariant, where K is a subgroup of ',
if T(k)p=p, for all keK.

We now have the canonical isomorphism ¢ of S(se(2g, C)) on to #(so(2g, C))
defined as follows (cf [1]).

Suppose peS(so(2q, C)), then p can be expressed uniquely as

P(EY=X enpig Yo Kingp =+ » Wij,
sd

where the coefficients a,,,, ., are symmetric functions, that s, @, .0 icwan = Turids»
for all permutations ¢ in the symmetric group of order s and for all integers s less than
or equal to a fixed integer 4. Now, ¢: S(so(2g, C))~%(s0(2g, C)) is defined by

¢(P)= Z Qirjr..ichs Li!)1--= pri:p-u DU-'

ssd

Let K be the a diagonal subgroup of SO(2g, €) defined as follows:

— ki 0 .
K—{(O EI).kleGL(q,C)}.

An element ue%(s0(2¢q, C)) is said to be K-invariant if the conditions
[, L;]=0 VL, 1<i,j<q

are satisfied. Observe that L, generate the Lie algebra of K.

It is well known that the map ¢ carries the K-invariant polynomials onto the K-
invariant differential operators {cf [1]). Thus, to show that a differential operator of
the form (3.4) is K-invariant, it suffices to show that its inverse image under the map
¢ is a K-invariant polynomial function. For this, we let

(" zz,)

be an element of X and let £eI™. The matrix k"ék, ke K, can be written as
k-[¢k=@"‘mk1 kE:{XVa),
VW RQK
If £y is the inverse image under the map ¢ of the type 1 in (3.4), then /) is given by
HE)=u (Y]
and
[T A E )=k k)
=tr(k7'[Y]k)
=f(&).
If /5 is the inverse image of ¢ type 2 in (3.4), then f; is given by

f(E)=t([X][W])
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and
[T(R) L&) =/fulk™" k)
= tr((kT [ X Ve )& [ ]iky))
=tr(ky (X1 W k)
=tr([X][W])
=f{ €}
If f; is the inverse image of ¢ of type 3 in (3.4), then f; is given by

SHE)y=r([XNQUWD

and
[Tk I E)Y=1(k™" Ek)
= tr((ki X V) (QVa) (BT [W1ka))
=tr(ki ' [X QN W1k)
=tr([X][QI W]}
=/:(£).

Now, it is clear that besides the commuting operators obtained from types |, 2 and 3.
we can multiply them together to form new commuting operators. Up to now, we have
been dealing with the algebra 4/ (so(2¢, C)). However, it is easy to see that the commut-
ing operators we have obtained also lie in the universal enveloping algebra %. Since any
commuting operator in 9 also belongs to % (s6(2g, C)), we have found all generators of
the commuting operators in %. Therefore, the proof of the theorem is now complete.

Now, let R* denote the matrix

(0 "Ik) RT( 0 I;c)
L 0 I 0/
Then we have the following proposition.

Proposition 3.5. The differential operators of the form tr(4,... A,... 4,), where 4,=
R or R* 1<i<r, r is an integer >0, generate the same algebra ¥~ of commuting
differential operators as the differential operators defined by (3.4) in theorem 3.3.

Proaf. The proof of this proposition is similar to the proof of lemma 6 in [6].

Remark 3.6, It is not difficult to show that the differential operators of the form
tr(4,...A,... A), where 4,= R or R*, commute with the right action of the subgroup
H of G. So, theorem 3.3 and proposition 3.5 illusirate a dual-pair action on F.

To be useful for our programme of multiplicity breaking, the commuting operators
defined in theorem 3.3 must be Hermitian. Therefore, we wan( to know what the
adjoints of those operators look like. Instead of examining the adjoints of the operators
defined in theorem 3.3 directly, it is more convenient to check the adjoints of the
commuting operators using the forms defined in proposition 3.5.
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Proposition 3.7. The adjoint of a differential operator tr{4, . .. 4,} defined in proposi-
tion 3.5 is given by tr(A, ... 4).

Proof. 1t was shown in [3] that the adjoint of

g
R.=Y z,,,—?—— 1<r s<2k
p=1 azm

is equal to

R.=3 Z i
s q§| s azq,.
To avoid cumbersome notation, we use the Einstein convention. If we let R¥; denote
the ¢ entry of the matrix R*, then we have

Tr(Ay ... A)=Rpe;Ropay . - . Rayer

where

Rayej1= Rag,. if 44=R

or

-

Ropyr = Ria,., if 4,=R".

Now, if @ is an operator, then let @ denote the adjoint of €. It follows that
(Tr(4y . .. AN = (RoyaRisoy - - - oo’

= (Ree) (RurarRores - - - Rapora)?

= RoyaRaya,. s - - R, ren

=Tr{A4,... A

Hence, the proof is complete.

Remark 3.8. From the above proposition, the adjoint of an operator in ¥ is still in
¥, Now, it is obvious that if an operator is not Hermitian, then the sum of the operator
and its adjoint would be Hermitian. Therefore, it is always possible to find a Hermitian
differential operator in 4 that commutes with L;. Now, all we need to do is to pick a
Hermitian operator in ¥~ and use it to decompose the Keriia™ space into distinct one-
dimensional subspaces. In general, we choose the commuting differential operator in
an ed hoc manner, However, in practice, just 2 low-degree differential operator generally
suffices. Moreover, it has been shown in [10] that all the differential operators defined
in proposition 3.5 can be generated from a finite set. In the next section, we shall
illustrate the procedure by an example.

4. An example

In this section, we are going to consider the multiplicity breaking of the irreducible
representation (1, 1, 0, 0) of Sp(8, C) in the irreducible representation (2, 2, 1, 1,0, 0,
0, 0) of GL(8, C} when we restrict this representation to the subgroup Sp(8, C).
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According to a result in [5]. the irreducible representation of (I, 1, 0, 0) of Sp(3, C)
occurs in this restriction twice. We shall show that our procedure will also allow us to
rederive this multiplicity.

According to our programme, we consider the Fock space #(C***) which contains
the Sp(8, C) module P**'"™(C**®). The dual pair for this example is therefore (SO*(8),
Sp(8, C)).

The submodule PZ2(C**%) contains in turn the subspace V&EE""%%, which
consists of polynomial functions in P**"'"(C*"®) that are simultaneously annihilated
by the lowering operators

L 3 Z 4 1 4
= 1 B -<J< s.. .
’ ngl " 62:1?1 g
Now, we need to know how many times the F{"*% occurs in P**!'N(C*"®). We are
going to prove a general theorem for this purpose. Let # be an arbitrary positive integer.
Then, it is well known that the representation (RZ>%, y&%) is irreducible when
we restrict jt to the subgroup Sp(2k, C). Therefore, V% is isomorphic to
yE® as the Sp(2k, C) module and we have the following theorem.

Theorem 4.1, Suppose (m)={m,...,m,) is 2 g-tuple of non-negative integers such
thatm, . . .2 m,. Recall that P* is the space of polynomial functions which transform
covariantly with respect to {*. Let R{™ denote the representation of Sp(2k, C) on
P by right translation. Then the Sp(2k, C) module P* is isomorphic to the tensor
pTOdUCt Véf:],ﬂ ..... ﬂ)® Vég:z.{).....ﬂ)®' . .® Véglq.ﬂ.. .0).

Proof. 1t follows easily by the fact that V™% is isomorphic to V%% as the

Sp(2k, C) module and the polynomial space P'™ is isomorphic to the tensor product
Vggl.O.....U]® V(‘:;’EZ’O""'O)®~ . '® VG(TV,U.....O}.

Remark 4.2. From the above theorem, all we need to know now is the direct sum
decomposition of the tensor product (#,,0,...,00®...®& (m,,0,...,0) of Sp(2k,
C).

Using a result in [7], we first derived the following formula for the decomposition
of the tensor product (n, ..., )R (1,0, ..., 0), which we call the Weyl formula of
Sp(2k, C):

(my,....,m)Q@n0,...,00=%
D (mta —am, patay—ay-1, Myt az— Gu—z,. .., M+ dg—are1)
where the sum is over all integers a;, i=1, ..., 2k, subject to the conditions
at...Fay=n
Oa<mioy—m—Guw -2 T 82— -1y
0@y Stye 1~ Mye2
Oap, smy

where i=2,3,...,kand j=0,1,...,k—2,
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if o, ..., m and n are big integers, then the tensor product decomposition of
(.o )® (n,0,. .., 0) will involve many terms, and the calculation of such a
decomposition is a tedious process. The advantage of the above formula is that we can
easily write a computer program to perform the calculation. Now, if we use the above
formula repeatedly g times, then we can easily obtain the direct sum decomposition of
the tensor pl’OdUCl V‘é;’m.o ..... 0)® V(nn 0)@ ® V(m,,.D ..... 0)

Now, according to lheorem 41 and remark 4.2, V},’,"'n‘m occurs  in
PEHIN(CAxE) o p 200D gy 200D @ {10000y (1000 eioht times. Let fine, be the
highest-weight vector of ¥&"?; then it is given by

Rman = 211822 — 212221 -

There exist eight linearly independent intertwining operators, for example Ly;PazLi2P2,
Ly PialaaPra,  LygaPizLyPiz,  LaaPsalizPa, LasloaPisPulals, Ly PulaPua,
Loagly LaaPiaPrs and P3Lialy PraLa, that send the Sp(S C) module ¥, “ 109 into the
Sp(8, €) module P2,

At this point, we want to mention how to choose the above eight linearly indepen-
dent operators. Our goal is to find elements in %(SO*(8)) that send Vi '*” into
PEECA*8Y In 9(SO*(8)), the raising operators are Pup and Lgp for a> ﬁ and the
lowering operators are P,y and D,g for ¢ <f. Therefore, we want to combine certain
raising and lowering operators in Z(S0*(8)) so that we can raise the 4-tuple of integers
(1,1,0,0) to (2,2, 1, ).

Let us return to our example. We use the Casimir operator

C=Tr(RR*R)
where
kd 3
R,s=n§l Zn oz, 1<r, 5s<8.

According to proposition 3.7, C is a Hermitian operator and the space

Wonax = Wl PONEL1L0009) s spanned by

1= La3Poali2Pasitax Ja= L3 PralaaPrabinay
J3=LaaProLsy Prafia o= LoaPoul 3 Piaboas
Js= LaaLosPr3PraLlan L fimax Jo= Lar PisLaz Prafimmax
J77 Loalon L3z PraPrafimay Ss= PiaLlisLai PralaiAimax

The operators L, 1 <i<j<4, then project Wi on to Kerp., = Kerl,00/221.10000)
The application of the operators L,, 1 <i<j<4, to a general vector in W, of the
form o, fi+ayfatasfitasfotasfstaefot arfitagfs, a.eC, leads to a system of
linear equations which in turn implies that Kery,, has dimension two. The Casimir
operator C acting on Kerma, has two distinct eigenvalues A, =37/3 and A;=-21. The
corresponding eigenvector for A, is Ay =300f, — 200/, — 100f5+ 6831, + 200f5+
300f— 50f7 +49/; and the corresponding eigenvector for 4; is fy=—14f; —7f,— 21f;.
Clearly, hy; and #; are orthogonal vectors since A, #, and C is Hermitian,
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In conclusion, the two intertwining maps that send V§)'*? into two orthogonal

(equivalent) submodules of V2" which serve as the labels are

Py =300L43P33L13P33— 20015 Pi4LgaP s — 100 L43 PyaLs) Pra+ 683 L34 Pay L3Py
+200L24L23P 3P yaliaa Ly + 300L 4y Py3LasPra
= 50L54 L2 L3z PyaP1at49P 3 LisLg Pzl

and

Py= —14L43PosLioPyy— TLoaP3aL13P3g = 21 Pi3LizLat Pialy

which are obtained from the forms of #, and 4, in terms of L;, P,.

5. Final remarks

This paper is different from {3, 5, 11, 14] in the sense that we did not give another way
of calculating the multiplicity occurring in the branching rule GL(2k, C)]Sp(2k, C).
Instead, we assume the multiplicity is known and we want to distinguish the equivalent
representations that occur in the branching rule. We have shown how to break the
multiplicity that occurs in the branching rule, by finding generalized Casimir operators
whose eigenvalues and eigenvectors can be used as labels to resolve the ambiguity
occurring when equivalent representations appear moie than once in the branching
rule. The procedure given in section 3 is possible to implement on a computer, and our
immediate goal is to write a computer program for the above procedure. In fact,
some of the calculations in section 4 were computed using the computer program
Mathematica. Though we have restricted our attention in this paper to the branching
rule GL(2k, C}|5p(2k, C), our procedure can be used on other branching rules with
certain modifications. We intend to investigate these problems in future publications.
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