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Abstract. We considcr rhc mullipliciiy problem of the branching rule GL(2k. CilSp(2k .  
C 1. Finite-dimensional irrcduciblc representations of GLi?k, C > are realized as nght lransla- 
lions on subspaces of the holomorphic Hilbcri (Bargmann) spaces of q x 2k complex b a r b  
abler. Maps are exhibited which c a r q  an irreducible reprcrntntion of Sp(2k. C 1 into these 
subspaces An algebra ofmmmuting operalors is constructed and it is shoun hoa cigen- 
\aIucs o i m l n i n  of there operaion can be u r d  to resolve the mLltipliciiy. 

1. Introduction 

One of the outstanding problems in the representation theory of Lie groups is the 
branching rule problem. Let G be a given Lie group and H a subgroup of G. Then it  
is well known that a finite-dimensional irreducible representation of G can be decom- 
posed as a direct sum of irreducible representations of H. The same irreducible represen- 
tation of H may appear more than once in the decomposition. The branching rule GLH 
consists of finding the multiplicity of an irreducible representation of H that occurs in 
the decomposition. Whippman [ 141 stated several branching rules associated with simple 
Lie groups. Since then, different techniques and formulations have been developed for 
studying branching rules of classical Lie groups [3, 5, I I ,  161 and of certain exceptional 
groups [8, 151. In this paper. we want to study the branching rule GL(2k, C)JSp(UC, 
C). In [ 5 ,  111, the rules are formulated via the Young tableaux. King 131 formulated 
the rule in terms of the addition and division of certain symmetric functions known as 
S-functions. These branching rules only give the multiplicity of an irreducible represen- 
tation of H and do not distinguish the equivalent irreducible representations. Here, our 
emphasis is different. We want to find a canonical way of labelling the equivalent 
representations that occur in the branching rule GL(Zk, C)LSp(Zk, C), in other words, 
we want to break the multiplicity that appears in the branching rule explicitly. We shall 
construct maps that carry an irreducible representation of Sp(2k, C )  into an irreducible 
representation of GL(2k, C). Then a class of generalized commuting Casimir operators 
are exhibited. The eigenvalues and eigenvectors of these operators can then be used to 
break the multiplicity that occurs in the branching rule. The main tools needed to carry 
out this analysis are a Fock space in q x 2k complex variables and the theory of dual 
pairs [2, 91, which is used to construct the Casimir operators. 

The general set-up for our problem will be discussed in section 2.  Section 3 makes 
use of the notion of dual pairs to exhibit an algebra of commuting differential operators. 
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Theorem 3.3 gives explicit form of this algebra of operators; the eigenvalues and eigen- 
vectors of certain elements of this algebra can then be used as labels to distinguish the 
equivalent representations that occur in the branching rule. This is shown explicitly in 
section 4 with an example of the branching rule GL(8, C ) J S p ( S ,  C). 

2. The general set-up 

From now on, we let G denote the general linear group GL(2k, C) and FI denote the 
complex symplectic group Sp(2k, C). I t  is clear that H is embedded in G in a natural 
way, The irreducible representation of G are parametrized by a 2k-tuple of non-negative 
integers (n i )  = ( n i l , .  . . ,ina) which satisfies the dominant condition ntl > . . . 2?mk. A 
concrete realization of a finite-dimensional irreducible representation of G can be 
obtained in the following fashion. Suppose ( i n )  = (nil, . . . , nzz) such that Inq+ I = . . . - 
niz=O for some 1 <q$2k. If Bq denotes the subgroup of lower triangular matrices of 
G, then we define a holomorphic character 

- 

d i n ) :  B , 4 *  

n("')(b) =b"' 1 , .  . . VbcB,. 

Let CqXzk  denote the complex vector space of all q x 2k matrices. Let V&? denote 
the complex vector space of all polynomial functionsf: Cqxa+C which satisfy the 
covariant condition f ( b Z )  = x ' " ' ( b ) f ( Z ) ,  for all (b, 2)  belonging to Bq x Cqxzk .  Let 
R# denote the holomorphically induced representation of G on Vi;) defined by 
(R$;!(g) f ) (Z)  =f(Zg), gcG. Then according to [12], R$? is irreducible and its highest 
weight is indexed by (m) which is called the signature of the representation R@. 
However, ifwe restrict this representation to H, then R&) becomes a reducible represen- 
tation of H. 

Now, if Z = [ z , p ] ~ @ " ~ ~ ,  then set z to be the complex conjugate of 2. Let dX,, 
and d Y,, denote the Lebesgue measure on 9l and define 

0 %  

0-1 i - 1  
d Z =  fl fl dXCidY,? 

to be the Lebesgue product measure on !RXqk. Define a Gaussian measure 

dp (Z)=  x-zqk exp[-tr(Zz')] 

Z E C : ' " ~ ,  where tr denote the trace of a matrix. A mapf: CqX"+@ is called holo- 
morphic square integrable if it is holomorphic on the entire domain CRX2 and if 

jcqeu I f (z)I2dp(Z) < 00. 

It is obvious that the holomorphic square integrable functions form a complex vector 
space, in fact, they form a Hilbert space with respect to the inner product 

(ft. h) = ~ c q x ~ h ( Z ) h o d ~ ( Z ) .  

Let F = F ( C v X % )  denote this Hilbert space, which is known as the Fock space of 
q x 2k complex variables. If P(Cqxa) is the vector space of all polynomial functions 
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on C s x E ,  then P(Cq"") is a dense subspace in 9. Moreover, if we endow P(Cqx2) 
with the differential inner product 

(2.1 ) 

where p ( D )  denotes the differential operator by replacing zjj by 8/82? ( I<i<q,  
1 <j<2k), then we can easily verify that the inner product (,, .) and (., .) are identical 
on p(CqXZk). 

If D, denote the group of all complex diagonal invertible matrices of order q, and 
if ( M )  = ( M I ,  . . . , M,) is a q-tuple of non-negative integers, we define a holomorphic 
character 

- 
(PI , p t )  =PI (Dl~dz)l:=o 

c"": D,-+C* 

cCM'(d) =(I? . . . d$ VdsD,.  

A polynomial function p :  CqXZk+C is said to transform covariantly with respect to 
fM' i f f (dZ) = c '" (d) f (Z) ,  for all (d, Z )  belonging to  D, x VX". It is obvious that 
the polynomial functions which transform covariantly with respect to form a 
subspace of 9. We shall denote this subspace by P'M1. Now, if (m) = ( i i i , ,  . . . , in,) is 
a q-tuple of integers such that in ,> .  . .2m, ,>O, then it is clear that V,$2'"..'' IS ' a 
subspace of P'"'. 

Now, an irreducible holomorphically induced representation of H is parametrized 
by a k-tuple of non-negative integers On) = (viI ,  . . . , iuk) such that nil >. . . > i n k .  A 
concrete realization of such an irreducible representation of H can be obtained as 
follows. Let Bk denote the lower triangular subgroup of GL(k, C). We define a holo- 
morphic character 

t""': Bk+C* 

t'V')(b) = b"21 1 1  . . . bl% 'Jb€&. 

Consider the following space: 

f: Ck""+Clfpolynomia1 function,f(bX)=t'""(b)f(X), 

a' )=O, l < i < j < k  forbsB,,XECkxzkand k (  a? - 
p = l  az, a q c k  a z p c n  az, 

Let R!!)  denote the representation of H on I/&') by right translation, that is, 
( R & " ( h ) f ) ( Z )  =f(Zh), /EH. Then according to 1131, R&? is irreducible with signature 
( f i r ) .  

Finally, we conclude this section with the following definition. 

Definifion 2.2. Let Vi;) be an H-module. The isotypic component I( Vi;)) of Vi:) in 
9 is the sum of all H-modules in 9 which are equivalent to Vi;'. 

3. The multiplicity breaking of GIH 

We shall now give a procedure for breaking the multiplicity that appears in the branch- 
ing rule GIH.  For this, suppose (m)  = (ml , . . . , inq) is a q-tuple of integers such that 
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illl 3 . . . >uiq>0. Let L‘”” denote the representation of GL(q, C )  on Pi’”’ defined by 
(L(”’)(g)p)(Z) = p ( g - ’ Z ) .  g s G L ( q ,  C )  and R1”” denote the representation of G on P“”’ 
by right translation. If we let L, (respectively, R,.J denote the infinitesimal operators 
of L“”’ (respectively, R‘””) corresponding to the standard basis e,j (respectively, e,‘) of 
the Lie algebra Cqxq (respectively, Ca.=) of GL(q, C )  (respectively, G); then 

Now, it is easy to see that the space J&’ consists of polynomial functions in P””) which 
are simultaneously annihilated by all lowering operators of the form 

L, with I <i< j<q .  (3 .1)  
and let us denote by (Rg’)IH, V#) the restriction of the representation of RE! to H .  

Now, let SU(q, q)  be the linear isometry group for the Hermitian form 

) 2 1 ) 2 + 1 2 2 ) 2 + .  . . f l z ~ 2 - I Z R + 1 1 2 -  . . . -12?,f over C. 
Then the group SO*(Zq) is the set of all elements g in SU(q, q )  such that g’J g- J ,  
where g’ is the transpose of g and 

where Io is the q x q  identity matrix. Then according to [2, 71, (SO*(2q), Sp(Zk, C ) )  
forms a dual pair of reductive groups. Let 

k a 2k 

La)= 21,- Pv= 1 ( z i , + k z , , - z ~ ‘ I z , ‘ I + k )  
‘ I - I  azj, ‘I-1 

and 

These operators form a basis for the Lie algebra so*(Zq) of the group SO*(Zq) and 
they generate a universal enveloping algebra % of differential operators which acts on 
P(Cvx2k). Moreover, by the PoincarbBirkoff-Wit1 theorem, the ordered monomials in 
L,, P,, D, form a basis for the algebra W .  

Now suppose the H-module (R&?, Vi:)) occurs in P”“’ p times (as will be shown 
in section 4, we can compute this p easily with the help of a special formula). Then 
from a consequence of Burnside’s theorem and the theory of dual pairs [Z, 91, there 
exist p linearly independent elements in % which form a basis for the vector space 
HomH( Vg), P‘””) of all intertwining operators from V$” to P””). In fact, if h!$ is 
the highest weight vector of Vi,?), then one can choose p elements pI , . . . , p#  of 4Y 
such that p&;, I < l < p ,  are linearly independent highest-weight vectors of the p 
copies of the H-module equivalent to V$’” which are contained in Pc”’. Let W~:$)‘’’’’ 
denote the vector space spanned by p j h z i ,  and let Kerk?;‘”’) denote its projection in 
Vi;!, that is, K e r ~ ~ l ” ”  is the common kernel subspace in IV~B“;“”” of all operators L,, 
in (3.1). Hence, Kerzi”“’ is isomorphic to the subspace I( V$”) n (Rg))IH, V@), the 
intersection of the isotypic component of Vi:) with (R&’IH, Vi;’). In order to break 
the multiplicity in I( V$‘”) n (R&)IH, we shall find operators in 4Y which commute 
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with the operators L,, in (3.1) (but without the condition i<j) and which decompose 
K e r ~ ~ ~ ' " ' '  into distinct one-dimensional eigenspaces. Then the eigenvalues and eigenvec- 
tors associated with the operators can be used as labels to distinguish the equivalent 
representations. In fact, we shall use commuting Hermitian operators in so that the 
eigenvectors are all orthogonal to each other with respect to the inner product (2.1). 

Let us now concentrate on finding operators in 1 which commute with Lji. Let Z 
be an element of C'"**. The action of GL(q, C )  on Z is simply of the form 

g'-[g'ZI g'EGL(q, C). 

Its dual action is therefore 

s+ [Zgl g € G .  

Now, let R denote the matrix (R,.$). We write L,, 1 gi, jgq, into a q x q  matrix [L] ,  
that is, 

[LI= [?I : 1:: L'3 
L,, ... 

Similarly, we write Pi, (respectively, D,,), I gi, jgq. into a q x q matrix [PI (respectively, 
[D]). Also, let [ E ]  denote the matrix [-LIT, where T denotes the transpose. We now 
have the main theorem of this paper. 

Tlreorein 3.3. In the universal enveloping algebra Q, consider the trace of arbitrary 
products of the following matrices: 

(3.4) 

Then these operators generate a subalgebra W" of differential operators in Q that 
commute with the operators Lo, /<i, jgq. 

Example. We can form the following commuting operator: 

~ ~ ~ ~ ~ 1 ~ ~ 1 ~ ~ 1 ~ ~ 1 ~ ~ 1 ~ ~ 1 ~ .  

Proox Let r' denote the complexification of so*(2q), that is r'=su(2q, C), the Lie 
algebra of the complex 2q x 2q special orthogonal group. If (EY, then ( is of the 
following form: 

where [ Y ]  is a q x qcomplex matrix, [Q] = -[ YIT and [ W], [XI are q x q skew-symmetric 
matrices. On the other hand, the differential operators P,, D, and L, as defined in (3.2) 
also form a basis for Y. Let S(so(Zq, C)) denote the symmetric algebra of s0(2q, C),  
and t(s0(2q, C)) denote the universal enveloping algebra of s0(2q, C). We can now 
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define the co-adjoint representation T o f H ' =  S0[2q, IC)  in S(so(Zq, IC))  by the equation 

[T(h')pl(S)=p(It'- 'IA') Ir'sN',pcS(so(2q, IC)) and {ET'. 

A polynomial p ~ S ( s o ( 2 9 ,  C)) is said to be K-invariant, where K is a subgroup of H', 
if T(k)p =p. for all k E K. 

We now have !he canonical isomorphism 4 of S(s0(2q, C)) on to @(s0(2q, IC)) 
defined as follows (cf [I]). 

SupposepeS(so(Zq, IC)), then p can be expressed uniquely as 

,de)= ai,j,,..~,j,J'w,. . . '9,~. 
s<d 

- where the coefficients ajri ,,., j j .  are symmetric functions, that is, a , ~ ~ , , j ~ , , ~ , , j ~ ~ , , ~ i ~ ~ , , - a ~ ~ , ~ , , . ; , i , ,  
for all permutations U in the symmetric group of orders and for all integers s less than 
or equal to a fixed integer d. Now, 4: S(s0(2q, C))+@(m(2q, C)) is defined by 

4 ( P )  = ai,j I . . .  i,j, Li ,,,... PI&.. Did, 
.s4d 

Let K be !he a diagonal subgroup of SO(29, IC) defined as follo~~s: 

An elemen! ue@(so(Zq, C))  is said to be K-invariant if the conditions 

[U, Lo] = 0 VL,, 1 4i. j 4 q  

are satisfied. Observe that L ,  generate the Lie algebra of K. 
It is well known that the map 4 carries the K-invariant polynomials onto the K- 

invariant differential operators (cf [ I ] ) .  Thus, to show that a differential operator of 
the form (3.4) is K-invariant, it suffices to show that its inverse image under the map 
4 is a K-invariant polynomial function. For this, we let 

be an element of K and let ~ E T I .  The matrix k - ' { k ,  k e K ,  can be written as 

lffi is the inverse image under the map 4 of the type 1 in (3.4), then/l is given by 

f d 0  =tr([Yl) 

[W)/ll( S)=f,(k-'Ik) 
and 

= tr(k;'[ Y]kl) 

= f d I ) .  
Iff2 is the inverse image of 4 type 2 in (3.4), thenf2 is given by 

f i ( 5 )  =tr ( [x l [wl)  
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and 

[ W ) h I ( 5 ) = h ( k - l 5 k )  

= tr((k,'[Xll;)(tii'[Wl~k~)) 
= tr(k;'[X][ W]kl) 

= t r ( [ x I [ ~ l )  

=f2(5). 

If f3 is the inverse image of 6 of type 3 in (3.4), t h e n h  is given by 

h( 5 )  = tr([Xl[QI[ wl) 

[ W ) h 1 (  5 1 =h(k- ' tk)  

and 

=tr((k;'[Xlk;)(~;'[Ql~l)(/f;'r W k d )  

= tr(k;'[Xl[Ql[ WIkd 

= t W l [ Q l [  Wl) 

=h(5). 
Now, it is clear that besides the commuting operators obtained from types I ,  2 and 3, 
we can multiply them together to form new commuting operators. Up to now, we have 
been dealing with the algebra 9/(so(2q, C)). However. it is easy to see that the commut- 
ing operators we have obtained also lie in the universal enveloping algebra 4V. Since any 
commuting operator in 9 also belongs to 9(so(2q,  C)), we have found all generators of 
the commuting operators in 9. Therefore, the proof of the theorem is now complete. 

Now, let R* denote the matrix 

Then we have the following proposition. 

Propsilion 3.5. The differential operators of the form tr(4,  . . . A i . .  . A V ) ,  where A i =  
R or R', 1 <i<r, r is an integer 20, generate the same algebra 7/' of commuting 
differential operators as the differential operators defined by (3.4) in theorem 3.3. 

Proof: The proof of this proposition is similar to the proof of lemma 6 in [6]. 

Remurk 3.6. It is not difficult to  show that the differential operators of the form 
tr(Al . . . A , .  . . A,) ,  where A , =  R or R*, commute with the right action of the subgroup 
H of G. So, theorem 3.3 and proposition 3.5 illustrate a dual-pair action on .F. 

To be useful for our programme of multiplicity breaking, the commuting operators 
defined in theorem 3.3 must be Hermitian. Therefore, we want to know what the 
adjoints of those operators look like. Instead of examining the adjoints of the operators 
defined in theorem 3.3 directly, it is more convenient to check the adjoints of the 
commuting operators using the forms defined in proposition 3.5. 
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Proposition 3.7. The adjoint of a differential operator tr(Al . . . A,) defined in proposi- 
tion 3.5 is given by tr(A,. . . A , ) .  

Proof. It was shown in 131 that the adjoint of 

Rrs= Z,,- 1 $r  s < 2k a 
az, 

is equal to 

q a 
Rs,= Zvs - .  

,=I az,, 
To avoid cumbersome notation, we use the Einstein convention. If we let R& denote 
the ap entry of the matrix R*, then Iye have - 

Tr(A1.. . AJ=&,m,&a3..  .Rc,., 

where 

if A,= R - I 

Re,*,+ 1 -Ref,+ I 

or 

RoF,4 I = R$,W I if AI= R*. 

Now, if 8 is an operator, then let 8' denote the adjoint of 8. I t  follows that 

(Tr(AI . . .A , ) )+=  (R,,,,k,,, . . . 
+ - =(k,d+(&,&2c, . . . 

= &$%,+, . . . &, ,*, 
- 

=Tr(A, .  . . A l ) .  

Hence, the proof is complete 

Rentark 3.8. From the above proposition, the adjoint of an operator in 9- is still in 
V .  Now, it is obvious that if an operator is not Hermitian, then the sum of the operator 
and its adjoint would be Hermitian. Therefore, it is always possible to find a Hermitian 
differential operator in  02 that commutes with L,.  Now, all we need to do is to pick a 
Hermitian operator in V and use it to decompose the Kergi""' space into distinct one- 
dimensional subspaces. In general, we choose the commuting differential operator in 
an ad hoc manner. However, in practice, just a low-degree differential operator generally 
suffices. Moreover, it has been shown in [IO] that all the differential operators defined 
in proposition 3.5 can be generated from a finite set. In the next section, we shall 
illustrate the procedure by an example. 

4. An example 

In this section, we are going to consider the multiplicity breaking of the irreducible 
representation (1, 1, 0, 0) of Sp(8, C )  in the irreducible representation (2, 2, 1, 1, 0, 0, 
0, 0 )  of GL(8, C) when we restrict this representation to the subgroup Sp(8, C). 
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According to a result in [SI. the irreducible representation of ( I ,  I ,  0, 0) of Sp(8, C )  
occurs in this restriction twice. We shall show that our procedure will also allow us to 
rederive this multiplicity. 

According to our programme, we consider the Fock space ?7(C4x8) which contains 
the Sp(8, C )  module Pc2.2.i~')(C'"8). The dual pair for thisexample is therefore (SO*(S), 

The submodule P'2,2,1.1)(C4 "*) contains in turn the subspace V$:2,1:2.1.1.0.,..'o) , which 
consists of polynomial functions in P2.2.1.11(C'x8) that are simultaneously annihilated 
by the lowering operators 

SP(8, 5)).  

1 $i<j<4.  

Now, we need to know how many times the V$'~o~ol occurs in P(2.2.1.11(C4x8). We are 
going to prove a general theorem for this purpose. Let n be an arbitrary positive integer. 
Then, it is well known that the representation (R$j~o,...,o), V$;O.....O1) is irreducible when 
we restrict it to the subgroup Sp(UC, C). Therefore, V&o.....ol is isomorphic to 
,&O.....O, as the Sp(X, C) module and we have the following theorem. 

Tlieorein 4.1. Suppose (in)=(ml,  . . . , n7,J is a q-tuple of non-negative integers such 
that in, 2 .  . . amq. Recall that P""' is the space of polynomial functions which transform 
covariantly with respect to  c'"'). Let RP' denote the representation of Sp(2k, C) on 
P""' by right translation. Then the Sp(Zk, C )  module P""' is isomorphic to the tensor 

8 a 
, = I  az,, 

L,= 1 zzn- 

product V,$I,os-~~) @ v, h . O . . . . . O )  8. . .@ v;y.'  ,O). 

Proof. It  follows easily by the fact that Vip'.....ol IS ' isomorphic to V$?o"-o' as the 
Sp(Zk, C )  module and the polynomial space P'"" is isomorphic to the tensor product 
v$gi.o ..... O>@ v$2,0 ..... 01 @, , .@ v&"... ."'. 

Remark 4.2. From the above theorem, all we need to know now is the direct sum 
decomposition of the tensor product ( m ,  , 0, . . . ,O)@. . .Q (mq, 0,. . . , 0) of Sp(Zc, 
C). 

Using a result in [7], we first derived the following formula for the decomposition 
of the tensor product (in,, . . . , mk)@ (n, 0, . . . , 0), which we call the Weyl formula of 
SP(X, C ) : 

(m,,  . . . , mk)@ (n ,  0,. . . , O ) E  2 
@ (m1 + a ,  -au;,  ni2 + a2 - aZk- I ,  i i i )  + a, - a 2 k - 2 ,  . , . , in* + ak - a k +  I )  

where the sum is over all integers a;,  i= 1, . . . ,2k, subject to the conditions 

a , + .  . .+alk=n 

0 <a,<mi- I - ini-  a2k-(i-21 + a%-(;- I )  

0&a%-j<ii7j+~ -inj+z 

O<ak+I&mk 

where i=2,3,. . . , k andj=O, I , .  . . , k - 2 .  
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I f  n i l ,  . . . , riik and n are big integers, then the tensor product decomposition of 
(n i l , .  . . , i n k ) @  (ri, 0,. . . , 0) will involve many terms, and the calculation of such a 
decomposition is a tedious process. The advantage of the above formula is that we can 
easily write a computer program to perform the calculation. Now, if we use the above 
formula repeatedly q times, then we can easily obtain the direct sum decomposition of 

Now, according to theorem 4.1 and remark 4.2. V$".',') occurs i n  
p(2.2.1.11(c44x), v iy)@ v~y" @ V & y ) @ V i y ]  eight times. Let hmax be the 
highest-weight vector of V i ~ l ~ o . o ' ;  then it is given by 

the tensor product Vi7!.0..-.0)@ Vig2.0.,-.0) @. , , @ v;g+o ..... 0) 

h,," = Z l l i 2 2  -212221 . 
There exist eight linearly independent intertwining operators, for example L43P2JL12P23, 
LllPI4L24P14, L42PI2L31PI2, L24P3&Ll3P% L24L23PISP14L42L31, L4lPI3L2IPI1, 

L14L~IL~2P14P14 and P I ~ L ~ ~ L 4 ~ P ~ 2 L 3 1 .  that send the Sp(8, C )  module V$l,o,o) into the 
Sp(8, C) module P(2~2~1~"(C4x*).  

At this point, we want to mention how to choose the above eight linearly indepen- 
dent operators. Our goal is to find elements in ,%(S0*(8)) that send Vi:l,o.o) into 
P(2.2.1.1)(C4xs). In *(SO*(S)), the raising operators are Pap and L,, for a > p  and the 
lowering operators are Pep and D,, for a < p .  Therefore, we want to combine certain 
raising and lowering operators in W(S0*(8 ) )  so that we can raise the 4-tuple of integers 
( 1 ,  I , O , O )  to ( 2 2 , 1 , I ) .  

Let us return to our example. We use the Casimir operator 

C= Tr( RR* R )  

where 

1 <r ,  sG8. 
a 4 

R,,= z,,- 
,=I az,, 

According to proposition 3.7. C is a Hermitian operator and the space 
11 I ~ ~ ) ~ 2 ~ . ~ . ~ , ~ . ~ ~ ~ ~ ~ ~  is spanned by Wmaxs  W,.&' ' 

f i  = L 4 3 P 2 1 L 2 P 2 3 ~ ~ m a x  fi= L31p14L24P14~ImB. 

fi = 42P12L31PI2/~max /4= L24P34L13Pdmax 

Ss = L24LxPiiP 14L42L31 h,,,, h= L41P13L23P13kmax 

f? = L24L21L32P14P14/~max fs= P I I L I ~ L ~ I P I z L ~ I ~ ~ ~ ~ ~  

The operators L,, 1 di<j<4, thzn project W,,, on to Ker,,, Ker~~:.o~'"2~2~'~1~0~010.01. 
The application of the operators L,, I <i<j<4, to a general vector in Wmnx of the 
form a l f i + a 2 f i + a 3 f , + a 4 ~ + a 5 f s + a s f s + a 7 f ? + a g f g ,  a,cC, leads to a system of 
linear equations which in turn implies that Kern,,, has dimension two. The Casimir 
operator Cacting on Ker,,, has two distinct eigenvalues A I  =37/3 and A2=-21. The 
corresponding eigenvector for AI  is h~ = 300J - 200f2 - 100h + 683/4 + ZOOf5 + 
300b-50f?+49fs and the corresponding eigenvector for AI is k2=-14fi -7/4-21&. 
Clearly, h, and h2 are orthogonal vectors since AI #& and C is Hermitian. 
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In conclusion, the two intertwining maps that send VJp.o.o) into two orthogonal 
(equivalent) submodules of V&?:2.’,1,0b-o) which serve as the labels are 

PI  = ~ O O L ~ ~ P ~ ~ L I ~ P ~ ~ - ~ O O L , I P  14L24Pi4- 1 00L,2P izL31 P 12 + 683Ld34L13P34 

+ 200L24L23P13Pl4L42L,I + 300L41PI3LZ3P13 

- 50L24L21L32P14PIJf 49P13L13L41P I2L3I 

and 

P2 = - 14L43P23L12P23 - 7L24P34LI3PM - 21 PI3L13L41PI2L31 

which are obtained from the forms of hl and h2 in terms of Lo, P,,. 

5. Final remarks 

This paper is different from [3, 5 ,  I I ,  141 in the sense that we did not give another way 
of calculating the multiplicity occurring in the branching rule GL(2k, C)lSp(UC, C). 
Instead, we assume the multiplicity is known and we want to distinguish the equivalent 
representations that occur in the branching rule. We have shown how to break the 
multiplicity that occurs in the branching rule, by finding generalized Casimir operators 
whose eigenvalues and eigenvectors can be used as labels to resolve the ambiguity 
occurring when equivalent representations appear more than once in the branching 
rule. The procedure given in section 3 is possible to implement on a computer, and our 
immediate goal is to write a computer program for the above procedure. In fact, 
some of the calculations in section 4 were computed using the computer program 
Mathematica. Though we have restricted our attention in this paper to the branching 
rule GL(UC, C)&(2k, C), our procedure can be used on other branching rules with 
certain modifications. We intend to investigate these problems in future publications. 
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